

Integration Guidelines

Consuming data using the MiX Integrate REST API

MiX Integrate is the generally recommended option for integrating with the MiX platform, and is the starting point for
most integrations.

While the API can be accessed using any REST-capable client software or framework, customers using .NET can take
advantage of the publicly-available MiX.Integrate.Api.Client package for simplified programmatic interaction with the
API. For the full list of endpoints and methods available, refer to the online REST API documentation.

While every customer's needs are unique, a number of operations are commonly required by many client systems:

- Retrieve / refresh master data.

- Live tracking.

- Retrieving historical data.

- Streaming of data.

To assist current and future integrators, we have compiled details of the recommended way to implement each of the
above operations which includes:

- the REST API endpoint to use.

- the equivalent API client package method.

- a brief description of the data returned.

- recommended call frequency.

Common Operation 1: Retrieving and refreshing master data

This operation is common to most client applications. "Master data" is reference data (entities commonly referenced by
their 64-bit MiX Fleet Manager identifiers) not subject to frequently changes - lists of assets, drivers, user-defined
locations, etc. - and therefore does not need to be retrieved frequently. It should be retrieved and cached locally, then
periodically refreshed.

Organisations

REST: GET /api/organisationgroups

API Client: GroupsClient.GetAvailableOrganisations

Retrieves a list of available organisations:

- MiX Fleet Manager (long) identifier: GroupId.

- Organisations are groups of type OrganisationGroup.

- Refresh no more than once per day.

Groups

REST: GET /api/organisationgroups/subgroups/{organisationId}
API Client: GroupsClient.GetSubGroupsAsync(organisationId)

Gets an organisation’s group hierarchy as a tree of groups and subgroups:

- MiX Fleet Manager (long) identifier: GroupId.

- Cache locally, use to resolve group IDs.

- Refresh periodically (max 1 or 2 times per day).

Assets

REST: GET /api/assets/group/{organisationId}
API Client: AssetsClient.GetAllAsync(organisationId)

Gets a list of all assets in an organisation:

- MiX Fleet Manager (long) identifier: AssetId.

- Includes legacy 16-bit FM identifier: FmVehicleId.

- Cache locally and use to resolve asset IDs.

- Refresh periodically (max 4 – 6 times per day).

Drivers

REST: GET /api/drivers/organisation/{organisationId}
API Client: DriversClient.GetAllDriversAsync(organisationId)

Gets a list of all drivers in an organisation:

- MiX Fleet Manager (long) identifier: DriverId.

- Includes legacy 16-bit FM identifier FmDriverId.

- Cache locally and use to resolve driver IDs.

- Refresh periodically (max 4 – 6 times per day).

Library Events

REST: GET /api/libraryevents/organisation/{organisationId}
API Client: DriversClient.GetAllAsync(LibraryEvents(organisationId)

Gets a list of an organisation’s defined events:

- MiX Fleet Manager (long) identifier: EventTypeId.

- Cache locally and use to resolve event type ids.

- Refresh periodically (max 1 – 2 times per day).

Locations

REST: GET /api/locations/group/{organisationId}
API Client: LocationsClient.GetAllAsync(organisationId)

Gets all the user-defined locations of an organisation, optionally includes the shape definition:

- MiX Fleet Manager (long) identifier: LocationId.

- (Optionally) includes WKT shape definitions.

- Cache locally, use to resolve locations IDs, map-related activity.

- Refresh periodically (max 1 or 2 times per day).

Common Operation 2: Live tracking

This operation is commonly used by client applications needing the current position of assets at any given time, usually

(though not necessarily) for real-time monitoring or tracking purposes. The client application calls the API at regular

intervals to get the up-to-date information on the position of each asset.

Latest position - all assets in an organisation

REST: POST /api/positions/groups/latest/1

 BODY: [organisationId]

API Client: PositionsClient.GetLatestByGroupIds(organisationId, 1)

Retrieves a list of the latest position of every asset in an organisation

- Calling this method with an organisationId is strongly recommended! It is the fastest and most efficient way
to retrieve current positions, with the least amount of overhead.

- Calling this method with anything except an organisationId results in poor performance and is strongly
discouraged .

- After calling this method, a client application must wait at least 30 seconds before calling the method again.

Latest position - specific subset of assets in an organisation

REST: POST /api/positions/assets/latest/1
 BODY: [assetId1, assetId2 [,...n]]
API Client: PositionsClient.GetLatestByAssetIds(List<assetId>, 1)

Retrieves the latest position of each asset in a specified list:

- Call this method when you only want positions for some of the assets in an organisation.

- When the list has more than 100-150 assetIds, you will usually get faster results by calling the method above
to (retrieve positions for all assets in the organisation), and discarding the positions you don't need.

- After calling this method, a client application must wait at least 30 seconds before calling the method again.

The 30-second delays mentioned here are of critical importance - requests by client applications failing to
observe this delay may be rejected

Common Operation 3: Retrieving historical data

This operation is commonly used by client applications to retrieve data (trips / events / positions) associated with

selected assets or drivers over a given period of time. For example:

- Retrieve trips for a date range for assets for fuel-consumption reporting

- Retrieve positions for plotting an asset's route on a map

- Retrieve over-speeding events for driver behaviour analysis

Customer needs are many and varied, and the REST API methods for accessing historical data are intended to be

used for relatively specific, targeted queries.

Although MiX does not (yet) prevent customers from using MiX Integrate for bulk transfers, it is an extremely

inefficient and costly way to retrieve historical data in bulk and is strongly discouraged. Customers seeking access to

historical data in bulk (to populate a data warehouse, for example), should log a Support Request and request a data

dump / export instead.

Retrieving historical trips

Trips - for specific assets and a given date range

REST: POST /api/trips/assets/from/{from}/to/{to}?includeSubtrips=<true|false>
 BODY: [assetId1, assetId2 [,...n]]
API Client: TripsClient.GetRangeForAssets(List<id>, {from}, {to},includeSubtrips)

Retrieves trips for the listed assets over the given date/time range:

- Date and times must be specified in UTC, max range = 7 days.

- Subtrip details are excluded by default, unless includeSubtrips = true.

Trips - for specific drivers and a given date range

REST: POST /api/trips/drivers/from/{from}/to/{to}?includeSubtrips=<true|false>
 BODY: [driverId1, driverId2 [,...n]]
API Client: TripsClient.GetRangeForDrivers(List<id>, {from}, {to},includeSubtrips)

Retrieves trips for the listed drivers over the given date/time range:

- Date and times must be specified in UTC, max range = 7 days.

- Subtrip details are excluded by default, unless includeSubtrips = true.

Trips - for groups (not recommended except at org level)

REST: POST /api/trips/groups/from/{from}/to/{to}/entitytype/Asset?includeSubtrips=<true|false>
 BODY: [organisationId]]
API Client: TripsClient.GetRangeForGroups({organisationId},{from},{to},"Asset",{includeSubtrips})

Retrieves trips in the organisation for the given date/time range:

- Date and times must be specified in UTC, max range = 7 days.

- Subtrip details are excluded by default, unless includeSubtrips = true.

- For performance reasons, this method should ONLY be called with an organisationId (so the EntityType is
immaterial)

Retrieving historical events

Events - for specific assets and a given date range

REST: POST /api/events/assets/from/{from}/to/{to}
 BODY: {

 "EntityIds": [assetId1, assetId2 [,...n]],
 "EventTypeIds": [eventTypeId1, eventTypeId2, [,..n]]
 }

API Client: EventsClient.GetRangeForAssets({assetIds},{from},{to},{eventTypeIds})

Retrieves events for the listed assets over the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

- Filter the results by EventTypeIds, leave empty or null to retrieve all events.

Events - for specific drivers and a given date range

REST: POST /api/events/drivers/from/{from}/to/{to}
 BODY: {

 "EntityIds": [driverId1, driverId2 [,...n]],
 "EventTypeIds": [eventTypeId1, eventTypeId2, [,..n]]
 }

API Client: EventsClient.GetRangeForDrivers({driverIds}, {from},{to},{eventTypeIds})

Retrieves events for the listed drivers over the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

- Filter the results by EventTypeIds, leave empty or null to retrieve all events

Events - for groups (not recommended except at org level)

REST: POST /api/events/groups/from/{from}/to/{to}/entitytype/Asset
 BODY: [organisationId]]
API Client: EventsClient.GetRangeForGroups({orgId},{from},{to},"Asset",{eventTypeIds}

Retrieves trips in the organisation for the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

- Subtrips are excluded by default, unless includeSubtrips = true

- For performance reasons, this method should ONLY be called with an organisationId (so the EntityType is
immaterial).

Retrieving historical positions

Positions - for specific assets and a given date range

REST: POST /api/positions/assets/from/{from}/to/{to}
 BODY: [assetId1, assetId2 [,...n]]
API Client: PositionsClient.GetRangeForAssets({assetIds},{from},{to})

Retrieves positions for the listed assets over the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

Positions - for specific drivers and a given date range

REST: POST /api/positions/drivers/from/{from}/to/{to}
 BODY: [driverId1, driverId2 [,...n]]
API Client: PositionsClient.GetRangeForDrivers({driverIds},{from},{to})

Retrieves positions for the listed drivers over the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

Positions - for groups (not recommended except at org level)

REST: POST /api/positions/groups/from/{from}/to/{to}/entitytype/Asset
 BODY: [organisationId]]
API Client: PositionsClient.GetRangeForGroups({orgId},{from},{to},"Asset")

Retrieves positions for all assets in the organisation for the given date/time range:

- Date and times must be specified in UTC, max range 7 days.

- For performance reasons, this method should ONLY be called with an organisationId (so the EntityType is
immaterial).

Common Operation 4: Data Streaming

This operation is commonly used by client applications that need to retrieve data (trips / events / positions) from the

MiX platform based on the time at which data is added to the MiX back-end data store. Data is not necessarily

received by the MiX platform in chronological order (consider the deferred nature of passive data, for example), so

this data retrieval operation is typically used as a way to adding newly-received data of any age to a client-side

repository such as a data warehouse.

(In the legacy FM Web Services API, this type of incremental update was facilitated by the use of record ID

"bookmarks" and calls to GetxxxSinceID endpoints.)

With MiX Integrate, clients retrieve newly-added data through calls to "CreatedSince" endpoints using timestamps

called SinceTokens (UTC timestamps in the format YYYYMMddHHmmssfff).

CreatedSince endpoints:

• return only data created since the point in time denoted by the SinceToken

• limit the number of records that can be returned per call

• indicate whether more data is available via the response header HasMoreItems

• indicate the token to be used for the next request via the response header GetSinceToken

Streaming of events

Events - created since a given timestamp for specific assets

REST: POST /api/events/assets/createdsince/sincetoken/{sinceToken}/quantity/{quantity}
 BODY: [assetId1, assetId2 [,...n]]
API Client: EventsClient.GetCreatedSinceForAssets({assetIds},{sinceToken},{quantity})

Retrieves events created since a specific timestamp for the specified assets:

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call, as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Events - created since a given timestamp for specific drivers

REST: POST /api/events/drivers/createdsince/sincetoken/{sinceToken}/quantity/{quantity}
 BODY: [driverId1, driverId2 [,...n]]
API Client: EventsClient.GetCreatedSinceForDrivers({driverIds},{sinceToken},{quantity})

Retrieves events created since a specific timestamp for the specified drivers:

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Events – created since for organisation

REST: GET /api/events/groups/createdsince/organisation/{orgId}/sincetoken/{sinceToken}/quantity/{quantity}
API Client: EventsClient.GetCreatedSinceForOrganisation({orgId},{sinceToken},{quantity})

Retrieves events created since a specific timestamp for an organisation:

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Events – created since for organisation filtered by EventTypeId

REST: POST /api/events/groups/createdsince/organisation/{orgId}/sincetoken/{sinceToken}/quantity/{quantity}
BODY: [eventTypeId1, eventTypeId2 [,.. n]]

API Client: EventsClient.GetCreatedSinceForOrganisationFiltered({orgId},{sinceToken},{quantity},List<eventTypeId>)

Retrieves events created since a specific timestamp for an organisation, filtered by EventTypeId:

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Streaming of positions

Positions – created since for entities in groups since a specified timestamp (not recommended
except at site level)

REST: POST /api/positions/groups/createdsince/entitytype/Asset/sincetoken/{sinceToken}/quantity/{quantity}
 BODY: [siteId1, siteId2 [,...n]]

API Client: PositionsClient.GetCreatedSinceForGroups({siteIds},"Asset",{sinceToken},{quantity})

Retrieves positions created since a specific timestamp for entities in the specified groups:

- sinceToken may not be older than 7 days

- EntityType can be Asset or Driver

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Positions – created since for organisation

REST: GET /api/positions/groups/createdsince/organisation/{orgId}/sincetoken/{sinceToken}/quantity/{quantity}
API Client: PositionsClient.GetCreatedSinceForOrganisation({orgId},{sinceToken},{quantity})

Retrieves positions for an organisation created since a specific timestamp (sinceToken):

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Streaming of trips

Trips - created since a given timestamp for specific assets

REST: POST /api/trips/assets/createdsince/sincetoken/{sinceToken}/quantity/{quantity}
 ?includeSubtrips=<true|false>
 BODY: [assetId1, assetId2 [,...n]]
API Client: TripsClient.GetCreatedSinceForAssets({assetIds},{sinceToken},{quantity},includeSubtrips)

Retrieves trips created since a specific timestamp for the specified assets

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Trips - created since a given timestamp for specific drivers

REST: POST /api/trips/drivers/createdsince/sincetoken/{sinceToken}/quantity/{quantity}
 ?includeSubtrips=<true|false>
 BODY: [driverId1, driverId2 [,...n]]
API Client: TripsClient.GetCreatedSinceForDrivers({driverIds},{sinceToken},{quantity},includeSubtrips)

Retrieves trips created since a specific timestamp for the specified drivers

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Trips – created since a given timestamp for organisation

REST: GET /api/trips/groups/createdsince/organisation/{organisationId}
/sincetoken/{sinceToken}/quantity/{quantity}?includeSubtrips=<true|false>

API Client: TripsClient.GetCreatedSinceForOrganisation({organisationId},{sinceToken},{quantity}, includeSubtrips)

Retrieves trips created since a specific timestamp for an organisation

- sinceToken may not be older than 7 days

- The HasMoreItems property or header of the response indicates whether more data after the retrieved
quantity is available

- The GetSinceToken property or header of the response indicates the sinceToken to be used to retrieve
subsequent data

- A client may call this method repeatedly to retrieve all available data, using the GetSinceToken returned by
one call as the SinceToken for the next call as long as HasMoreItems is TRUE

- When the HasMoreItems method or property of the response is FALSE, (indicating that all available data has
been retrieved), the client must wait a minimum of 30 seconds before calling the method again to request
new data

Consuming data using a data feed

There are instances where, after unit configurations have been streamlined and data bloat eliminated, the sheer

volume of data involved becomes burdensome, even for an efficient and well-implemented client solution, and an

alternative way of consuming data generated by units is necessary.

In such instances, the transfer of certain types of data via MiX Integrate's "pull"-based mechanism can be replaced by

a "push"-oriented system: a MiX data feed.

NB:

- Every data feed incurs daily operating costs and significant maintenance and management overhead.

- A data feed should never be used as a panacea for a poorly-designed integration or badly-configured fleet

With a MiX data feed, any (or all) of the following types of data can be pushed to a target destination (owned and

operated by the consumer) as such data is received and processed, alleviating the consumer system of the burden of

retrieving the data from MiX Integrate:

- Trips

- Events

- Positions

Note: data feeds do not negate the need for MiX Integrate. Master data, for example, will still need to be retrieved and

refreshed periodically.

Once configured and activated, a data feed monitors the data store for trips, events, and/or positions belonging to the

organisation(s) which it is configured to service. As each qualifying record is added to the data store, the data feed

posts it as a message in MiX Integrate JSON format to the target destination, where it can be consumed by the client

application.

Currently, data feeds support posting to:

- AWS Kinesis Data Streams (separate stream per data type)

- Microsoft Azure Event Hubs

In all cases, the target destination(s) belong to the consumer. The consumer remains wholly responsible for the

operation, maintenance, management, and security of the destination(s), and wholly liable for all costs arising from

the operation and/or use thereof by any party, including MiX.

Information required to set up a data feed

To set up a data feed, the following information is required, and a Support Request logged:

Data centre hosting the organisation(s): US / DUB / SYD

Full name of the organisation(s):

Type(s) of data to be included in the feed:

- Positions

- Events

- Trips

Feed Target (Either AWS Kinesis OR Azure Event Hub)

AWS Kinesis Streams
AWS Region

Stream Name for Positions

Stream Name for Events

Stream Name for Trips

AWS Credentials

Access Key ID (these details should be sent separately and securely using a
parallel communication method Secret Access Key

Azure Event Hub
EH Connection String

Data Release: signed declarations from the relevant organisation(s) permitting data
to be posted to the listed target destinations (Terms and Conditions document)

